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ABSTRACT
The potential of using interface layer to reduce thermal stresses in the matrix of

composites with a mismatch in coefficients of thermal expansion (CTE) of fiber and matrix
has been investigated. It was found that the performance of the layer can be defined by the
product of the CTE and the thickness, and that a compensating layer with a sufficiently
high CTE can reduce the thermal stresses in the matrix significantly. A practical procedure

offering a window of candidate layer materials is proposed.
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INTRODUCTION

Metal matrix composites reinforced with ceramic fibers are attractive because of their
high specific stiffness and strength. Advantage can be taken from the high temperature
strength of ceramic fibers and the ductility of the metal matrix to produce a composite with
superior combined properties. However, a thermal mismatch exists between the ceramics
fibers and the metal matrix: the ceramics having a low coefficient of thermal expansion
(CTE) and metals have higher values of CTE. This thermal mismatch induces stresses in
the composite when subjected to temperature change. Matrix cracking has been observed
after cooling down from processing temperature to room temperature for brittle matrix
materials [1]. It has been proposed that the addition of an interface layer between the fiber
and the matrix can reduce the tensile residual stresses in the matrix to a level which is low
enough to avoid matrix cracking.

Some numerical parametric studies have been performed [2], [3] in an attempt to
determine the material parameters which are most beneficial in reducing thermal stresses. It
has been suggested that the optimum interface layer should have a CTE between those of
the matrix and fiber, with a low allowable modulus and a high layer thickness. A
subsequent simplified analysis which retains the dominant physical features of the problem
[4] showed that a compliant layer could not reduce the stresses in the matrix significantly.
However, a layer with a high CTE, compensating layer, can reduce the stresses in the
matrix significantly. The purpose of this study is to detremine the validity of the simplified
method and to produce results which are useful for design.

The study is based on a 3 cylinder model, isolating one fiber with an interface layer
and a matrix layer (Fig. 1). Only monotonic cooling is studied and the variation of the
materials properties with temperature is not considered. In a first part, the resﬁlts of the
simplified analysis which assumes a rigid fiber and a very thin layer, are recapitulated.
This analysis identifies the properties of an interface layer. In the second part, the
assumptions made previously are released and a complete elastic analysis is performed

assuming that the three materials are isotropic and linearly elastic. A systematic parametric



study is also conducted and a practical procedure offering a window of candidate layer

materials is proposed.
In a later study [5] both the interface layer and the matrix are considered to be elastic-

plastic, and the temperature dependence of the properties of the 3 materials is considered.
In addition to the 3 cylinder model, a unit cell of a hexagonal array of the fibrous composite

is defined and finite element computations are performed under several thermal-mechanical

loadings.



NOTATIONS

f fiber

4 interface layer

m matrix

j f,{, m

R; external radius of j

tg=Ry-R¢ layer thickness

E; Young's modulus of j

vj Poisson's ratio of j

Ajand uj Lamé coefficients of j

WIS\ B
(1=-2vpQA+vy 2(1+vy

o CTE of j

AT change in temperature

Oy radial stress (Gyp) in j

Opj hoop stress (Ogg) in j

Ogj longitudinal stress (037) in j

€rj radial strain (gr) in j

€pj hoop strain (ggg) in j

€z longitudinal strain (€z) in j

G; Mises equivalent stress in j

The radii R and Ry, are related to the fiber volume fraction Cs by the relation



1. SIMPLIFIED ELASTIC ANALYSIS
1.1 Stress-Strain Analysis

Ceramics fibers are usually four to five times stiffer than the metal matrix materials.
Hence, in order to simplify the calculations, it is assumed that
E¢

E— >>1 and —>>1
m El

The fiber volume fraction, Cy is assumed to be of the same order as the matrix volume

fraction so that

Ce

——=1

1-C¢

For the given assumptions the stiff fiber controls the thermal expansion in the axial
direction of the cylinder model. Hence, the stress distribution in the matrix and interface
layer is governed by a plane strain problem with a fixed inner radius at the fiber interface.
The analysis reveals that the differential CTE's of matrix and fiber, and interface layer and

fiber dictate the thermal stresses. Consequently, the differential CTEs are defined as
AOym =0m-0f and Acyg=0y-0f

The stress distribution in the matrix is given by the plane strain solution for a thick
walled cylinder subjected to an unknown internal pressure p, a traction free outer surface,
and a temperature change AT. Superimposing the solutions given in [6] for an internal

pressure and a temperature change gives the stress distributions in the matrix

(Rp/1)2-1
(Rm / Rf)2 -1

m="P



(Rm/r)2+1
(Rm/Rg)*-1

Oom =P

AL

+E,, Ao, AT
(Rm/Re>-1

Om =P

The highest stresses in the matrix occur at the inner surface of the cylinder, r = Ry. The

von Mises equivalent stress

o= \/03 +o%+ c% - 0,0g—0,0,—Cg0;

can be calculated as

2
_ C C
5, ={[pl_éf] [3/C%+1—4vm(1-vm)]—pEmAamATl_Ef2[1—2Vm]
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The layer is subjected to a pressure in the radial direction resulting from the contact with the

matrix
Org=-p

The temperature change AT introduces stresses in the hoop and longitudinal directions due
to the constraint from the fibers. The stresses in the hoop and longitudinal directions are
equal and are the sum of the stresses caused by the pressure and the thermal expansion

\7] 1

+ E,Ac,AT
vt 1-v,

Cgt=0Cu=-



The von Mises equivalent stress in the layer is given by
- 1 :
Gy = ——|EA0 AT +(1-2v,)p|
1- Vy

Compatibility in the radial displacement at the boundary between the inner surface of

the matrix and the interface layer is the condition which isolates the value of p which is

found to be
[1+vm]————;‘i°“ —-——i”‘
p= £0%m ~ V¢ E A0y AT
(1—V2)1+Cf+ Vi +t!Em vy
m
l—Cf I—Vm RfEll—Vt
1.2 Sensitivity Study

1.2.1 Stresses in the matrix

" The term E,A0.AT enters in all the expressions for stress and all results are
normalized with respect to this term. The stresses at the inner radius of the matrix are
shown in Fig. 2 as a function of normalized pressure for a fiber volume fraction Cf = 0.4
in a TizAl matrix with vy = 0.25. It can be seen that a pressure at the interface causes
increased tensile stresses in the hoop and axial direction that could cause matrix cracking,
initiated from defects at the fiber matrix interface.

The value of the critical stress for matrix cracking, Gcm, sets an upper limit for the
principal stresses Ggm, Ozm» and Orm and defines bounds on the pressure p if matrix
failure is to be avoided. The allowable equivalent stress, Oym, in the matrix defines other
bounds on the pressure. These conditions define a window for the interface pressure, Fig.
2, so that the failure criteria are not violated.

Inspection of the expression of p reveals that the pressure may be reduced by the
introduction of a compliant layer with low modulus which would increase the denominator,

but the second term in the denominator of p is usually sufficiently small to be neglected in



the calculations and the pressure is then linearly dependent on the parameter -AAa—’tl-. This
UmRg

Emt ?
(Rg
Figure 2 shows that the Mises equivalent stress has a minimum for an interface pressure

is small.

effect is demonstrated in Fig. 3 where it can be seen that the influence of

that is close to zero. The pressure p is zero when

(1— Vt)

DAY _ (14 vy)
1+ Vy

Aam Rf

from which it can be deduced that the stresses in the matrix are strongly influenced by the
parameter Aoyty. The results from Fig. 2 and Fig. 3 can then be combined in Fig. 4
where the highest principal stress and equivalent stress at the inner radius of the matrix
cylinder are plotted versus the parameter Aoyty/A0mRf.

If the pressure is to be reduced to a minimum, the differential CTE for the layer has to
be Aoty ~6Adyy, when ty/Rg= 0.1 For the case of SiC fibers, of~ 5 x 10-6/'Cina Tiz Al
matrix, oty ~ 10 x 10-6, requires that oty ~ 35 x 10-6. Handbook values [7] of metals with

a reasonably high melting point and high CTE are: silver 26 x 10-6, hafnium 500 x 106

and copper 17 x 10-6. It is evident therefore that an interface layer of readily available

materials with high CTE has the potential of substantially reducing thermal stresses in the

matrix.

1.2.2 Stresses in the Interface Layer

The tradeoff for the improved stress state in the matrix is that the thermal mismatch
has to be taken up by the interface layer. The deformation of the layer is constrained in the
hoop and longitudinal direction so that tensile stresses develop in the layer. The highest
principal stress in the interface layer is shown in Fig. 5 as a function of the different
dimensionless parameters defining the problem. The stress is strongly dependent on the
layer modulus, E¢/Em, and CTE, Aag/Aayy, but weakly dependent on the layer thickness

tg/Rs. This indicates that the stress is dominated by the constrained thermal expansion,



which is given by the second term in the stress expression, and is weakly dependent on the
interface pressure, the first term in this expression. The product Aoty governs the
reduction of stress in the matrix, Fig. 4, and has to have a required value to reducing the
stresses in the matrix to an acceptable level. It can be deducted from Fig. 4 and Fig. 5 that
it is more favorable to have a thick layer and a moderate high layer CTE than a thin layer
and a high layer CTE in order to fulfill the requirement of stress reduction in the matrix and

to avoid high tensile stresses in the layer.

2. LA ALYSI
2.1 Sress-strqin Analysis

The composite is not subjected to transverse loading and the outer surface of the
compound cylinder is traction free. The thermal loading is axisymmetric with respect to the
z-axis, then the displacement in the transverse plane is radial: Uj(r). The fibers are long
and the stress and strain distributions are constant in the z-direction except at the end
regions which will not be studied here. A generalized plane strain assumption is made: €z
= constant = ;. The other strains are given by:

: Y
= Uj and Eej = —r'

and there are no shear strains.

The linear thermo-elastic behavior gives the stresses as

U;
Oy = XJ(U +—r—+ez)+2ujU3—(37«.j+2uj)ajAT

, Uj U
oo = Ui+ —L 4, |+ 21— - (31, +2)1 )0 ;AT

U.
ozj=’~1‘(Ui+Tl+°’)+2“J°z-(3M+2“j)°‘1“



which gives the displacement field as

R?
Uj=er+Dj—rL

where ¢ and Dj are constants to be found by the boundary conditions. We have Dg=01in

order to obtain a finite solution in (f).

To summarize, the strains are given by

2
R:
Erj=°r(—rl) D;

A2
Egj=Cj+ 5-1 Dj

r
€,j=¢, = constant

The stresses are defined by

R. 2
Grj = 2(11“‘”])0]"’7")61_2“](';1) Dj—(37\.j+2uj)ajAT

RN
Ogj = 2(Aj+pj)cj+Aje, + ZHJ{T’] Dj—(3h;+2upe;AT

o'zj = ZA,JCJ + (A’J + 2},1})62 - (37\1 + 2uJ)a1AT
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The strains and the stresses are uniform in the fiber. The axial strain is constant in the
whole composite and the axial stresses are uniform in (£) and (m). The Mises equivalent

stress Gj is defined by

5} = %[(Grj o) +(oaj=5) +(05- %ﬂ

= 4@[3(-1-:-")40]2 +(cj- cz)zjl

The six unknown cf, ¢g, Dy, ¢y, Dy and e, are determined by the following conditions:

Ug=Uyatr=Rf
Uy=Upatr=Ry
Orf =Opz atr=Rf
Oy =Ommatr=Ry

Cm=oatr=Rm

Rm
21 [ Oyj1dr =0 = R¥G,¢ +(R7 - Rf o+ (RE-R%)oum=0
0

The linear system obtained is given in Appendix I.

Since 6ym(Rm) = 0, the stresses in the matrix can also be written as

r 2
O = 2HmDPm 1—(-R—"‘) :l

R 2
Oom = 2HmDm 1+(—m)

11



Ozm = 2l—lm[Dm —Cmt Cz]

It is reasonable to assume that Dy, 2 O (because this gives a compressive Oy and a tensile
Ofm). In this case, it is obvious that the minimal hoop stress is obtained for D, = 0,
which gives Oppy = 0 and gy =0, 1.¢. a uniaxial longitudinal stress state. This result was

confirmed numerically (see Section 2.3).

2.2 Sensitivity Study

The properties of the interface layer are defined by the four parameters: Eg, vy, oy
and tp. A sensitivity study was conducted in order to measure the influence of each of
these parameters on the reduction of the residual stresses in the matrix. As a conclusion to
this study, a procedure allowing the choice of candidate interface layer materials is

proposed in Section 2.3.
The fiber and the matrix are defined by the following data

. Fiber: SiC (SCS6)
Eg = 360 GPa, v¢ = 0.17, oy = 4.9 x 10-6/°C
+  Matrix: TizAl
Ep = 75.2 GPa, Vy = 025, 0 = 11.7 x 10-6/°C

The radii R¢ and Ry, are related to the fiber volume fraction by

2
Ce = (—Iif—) = 40.5%
R

m

The characteristics of the fiber and the matrix were kept constant but the parametric study

can be readily applied to fibers and matrix with other properties.

The range of interface layer parameters were chosen as follows:

12



69 <Ey<517 GPa
4<ay<30 x106/°C

0.028< £ <0.28
R¢

The Poisson's ratio of the layer vy was kept constant: vy =0.3.

To study the impact of the interface layer, a reference state was defined which
corresponds to the state of stresses in the matrix in a 2 cyclinder without the layer. The
stresses in the 3 cylinder model have been normalized with the reference stresses. The

stresses in the layer and matrix are given at the inner radii.

2.2.1 Influen he Young's Modulus Ey (oy, tg fixed)
The results of the sensitivity study have shown that in the range 69 + 200 GPA, the

value of Ey has little influence on matrix stresses (Fig. 6a). If Eg =200 + 517 GPA, then

- ifop<10x 10-6/°C, the value of Gy, is again independent of the value of Ey
(Fig. 6a).

- if op > 10 x 10-6/°C, the increase of E may reduce the stresses in (m) but
increase the stresses in (£) to unacceptable values (see Fig. 6a and 6b).

For the remaining of this study, we will choose Ey < 200 GPa. This is not too
restrictive because an important property of the interface layer is a high value of CTE (see
discussion in section 1.2) so that the layer is likely to be a metal for which the Young

modulus is usually lower than 200 GPa.

2.2.2 Influence of the CTE iy (Ey, ty fixed)

The results show that generally the matrix equivalent stress Gy, decreases
considerably as oy increases. However as illustrated in Fig. 7, the stresses reach a
minimum after which they increase again with increasing .

The decrease of G, is more pronounced if the fixed thickness ty is high as is evident

13



from Fig. 7.

In all the cases ogm- <1: the addition of the interface layer does reduce the residual
ref

stresses in the matrix.

2.2.3 Influence of the Thickness ty (Ey, oy fixed)

The results are qualitatively the same as for og; i.e. in general O, decreases as ty

increases (see Fig. 8).

2.2.4 A Convenient Parametric Representation

The conclusions of the above sensitivity analysis are in agreement with those of the
simplified analysis [4] described in section 1. That analysis lead naturally to the graphical
representation given in Fig. 4. In the analysis it was shown that the important layer
parameter which affected the matrix stress is Aagty. This graphical representatibn is used
to present the results of the sensitivity study and they are given in Fig. 9. These results
were generated using Ey = Eyy, = 75.2 GPa, and they are nearly the same for all values of
E¢ lower than 200 GPa. The representation proves to be very useful since all the factors
influencing the matrix stresses can be presented in one graph. Also shown in Fig. 9 are the
results of the simplified analysis. The complete analysis predicts lower stresses than those
from the simplified analysis, which is not surprising since the full analysis avoids
assumptions which imply constraint.

The range of x; = fﬂ% was limited to the domain of allowable pressure (defined
Ombg

in Fig. 2 and 3). The minimum value of Gy, corresponds to x¢ = 0.65. If xg > 0.65, it

was found that the radial stress in (m) becomes tensile and the hoop stress compressive

(Orm > 0, Ggm <0, Ozm > 0). Layers such that x¢ > 0.65 are over-compensating layers.

2.3 A Convenient Procedure to Choose Candidate Laver Materials
The interface layer is defined by 4 parameters: Ey, vy, 0y and tg. In the sensitivity

study we kept the Poisson's ratio of the layer constant: Vg = 0.3 and we found that it is

14




reasonable to take the Young modulus of the layer in this range: Ey = 69+ 200 GPa. So
we kept Ey = 69 GPa = constant.

The matrix stresses can be readily calculated using Fig. 9. However, using this form
requires further effort when making selection of the interface layer. This procedure is
developed to deal with this situation. The axes used in the proposed graphs are the
thickness of the layer and the CTE of the layer. The ratio of the matrix Mises equivalent
stress with and without the layer is determined, and the graph shown in Fig. 10 then
presents contours of constant reduction factor. Similarly in Figs. 11, 12, 13 the reduction

factors for the damage stress, tensile hoop stress and tensile axial stress are plotted in an

identical manner.

R ion of the Mi ivalen

. 5] G . :
It has been noticed that —~ and —£ decrease if o, decreases. So, for a given
O'ref Oref
stress reduction inthe matrix (i.e. a given contour in Fig. 10) one can choose og such that

4] . . . . 4]
_—L does not exceed a certain value to avoid layer cracking. The min. value of §£ was
Oref ref

found to be ~ 0.387 (see shaded line in Fig. 10). This contour was also found to

correspond to a uniaxial longitudinal stress state in the matrix (see remark at the end of

section 2.1).

Reduction of the Damage Equivalent Stress
In the same way that the Mises equivalent stress is related to the distorsion energy, a
so-called damage equivalent stress [8] is related to the total elastic energy and is defined by
1/2

2
o*=5 [-2-(1 +v)+3(1— 2v)(3_ﬂ) J
3 c

1
where Oy = :—S-O'kk.
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One notices the presence of the triaxiality ratio —H which is known to be a main feature in
c

failure.
The contours of Fig. 11 can be used in the same way as those of the Mises stress.

The same remark about the decrease of 0'; and o; when o, decreases applies also. If we

compare the contours of the Mises and the damage equivalent stresses, we find that:

i)  Inthe "upper" region of the plane defined by o, = 30 x 107 /°c, é!- =(.28
f

and -9;'-“- = (.387 (shaded line) the criterion based on the reduction of the Mises stress is
Oref

. . . . t
a bit more severe than the second one, i.e. for a given point (EL,a ,) we have
f

o* c
* = -
Oref Oref

i)  In the remainder region, the criterion based on the reduction of the damage
equivalent stress is a bit more severe than the first one. The reason is the following.

. * —
The calculations have shown that O = Gpef, SO

ag* 3] o 1
——S—=|H<=
Orf Oref |01 3

so, the triaxiality ratio in the matrix is
< — in the "upper” region i)

2 — in the remainder region ii)

Q[ r= Q|

R ion of the H
It appears that the reduction of the hoop stress in (m) is much more important than the
reduction of the Mises stress. The hoop stress can actually be decreased to a zero value,

which is shown by the shaded line in Fig. 12. This line corresponds also to the min. Mises

16



stress and to a uniaxial z-stress in the matrix. In the "upper" region defined by the shaded
line as previously, the hoop stress in (m) becomes compressive: Ogm < 0. This region

corresponds also to xy > 0.65, as defined in section 2.2.4.

R ion of the Longitudin
It appears that the reduction of G, is smaller than the reduction of G, or Ogy,. The

shaded line (G, minimal and Ggg = 0) gives Gﬂm- =0.6. A lower reduction cannot be
zref

expected and if the reduction of 6, is a concern, then the window of candidate layer

materials is reduced as shown by comparing Fig. 13 to the previous figures.

CONCLUSIONS
The thermal mismatch between the fiber and the matrix has to be taken up by the

interface layer and can subject it to high stresses if the Young modulus of the layer is high.
If this modulus is taken in a certain range, common to most metals, then the layer
performance is defined by the product of the CTE and the thickness.

A compensating layer with a sufficiently high CTE has the potential of reducing the
thermal stresses in the matrix significantly. Both the CTE and the thickness of the layer can
be adjusted in order to keep the stresses in the layer under a certain level. The maximum
hoop stress in the matrix can be reduced substantially but the axial stress in the matrix is
less affected by a layer. This implies that compensating layers can be expected to be very
successful in preventing cracking in composites where predominantly radial cracking is
observed in the matrix, but that while axial stresses can also be reduced, this reduction is
less dramatic.

Graphs have been produced which are simple to use. From Figs. 10 to 13, the
reduction in stress for any value of layer CTE and thickness are readily determined. The

absolute values of matrix stress can be easily determined by reference from another diagram

(Fig. 9).
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Fig. 1 Concentric 3 cylinder model.
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